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AN ERROR ANALYSIS FOR THE FINITE ELEMENT METHOD

APPLIED TO CONVECTION DIFFUSION PROBLEMS .

P
ABSTRACT Lavi
\\\\\:;> This paper analyzes the finite element method/ applied to a convection

diffusion model problem. Linear elements are used for the trial space. The

error is measured in a norm closely related to the ‘Lp norm. When the test

space is composed of linear elements with parabolic upwinding, the method is

shown to be optimal when the input data is piecewise smooth ~- a condition which

is usually observed in practice. Without these smoothness assumptions, the

method is shown to be non-optimal, even if the class of test spaces is extended

to include any elements which have a shape independent of the mesh size.
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INTRODUCTION

A large amount of attention has recently been focused on the application
of finite element methods to singularly perturbed boundary value problems.
These problems arise, for example, in convection diffusion equations for fluid
mechanics in which the convective term dominates. Finite element methods
which employ the standard piecewise polynomial test and trial spaces lead to
solutions having spurious oscillations unless the mesh size h 1is excessively
small. A popular way to alleviate this problem is to "upwind" the test space.
In the case of linear elements this can be done by adding a quadratic term,
multiplied by some parameter o , to each piecewise linear basis function of
the test space (see e.g. [5], [10]-[12], [15)-[17])). Heinrich,et al. [11], {121,
Christie, et al. [6] and others have displayed the optimal o , which is deter-

mined in such a way so that for the problem
-eu"+u' = 0 , u(G) =0 , u(l) =1,

the approximate solution agrees with the exact solution at the nodes. Griffiths
[10] selects the parameter o in order to obtain the best quasi-optimal type

estimate of the form

HU_UhH 2 C(E,h) inf llu_w'l ’
wesh

where u is the exact solution, uy is the approximate solution, Sh is the

trial space, and ]l-l] is the L2 norm of the derivative. However, the

constant ¢ 1s not bounded uniformly in ¢ and h; for example,if ¢ is

1

very small with respect to h, c(e,h) will increase with rate h ° as h - 0O .

Upwinding of the test space can also be done through the use of L-spline

basis functlons. Methods using these spaces are studied in Hemker [13],
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de Groen [7), and Hemker and de Groen [8], but a norm is used to measure the error
between the exact solution u and its piecewise linear approximation in which
the error cannot be small unless h << ¢,

The analysis in this paper is done specifically for the model problem

(1.1) -cu" +u''= £,
u(0) = u(l) = 0

In section 2 we present the general theory for obtaining quasi-optimal estimates, as
established in Babuska, Aziz [1]. Mesﬁ dependent norms for the model problem,
analogous to those presented in {2], are defined in section 3. We will be measur-
ing the error in a norm similar to the Lp norm,which is appropriate in our

case because it allows for approximability when using a piecewise linear trial

space. In section 4 a quasi-optimal result of the form

(1.2) llu—uh]] < ¢ inf ||u—w‘| s
Y434

where ¢ 1s independent of ¢ and h , is proven when the test space is composed
of L-spline basis functions. However, it is also shown that for a large class of
test functions, it is in general impossible to obtain a result of the form (1.2).
In particular, quasi-optimality cannot be proven with the use of quadratically
upwinded elements for any choice of the parameter @ unless we restrict our-
selves to the case of "reasonable'" inputs f . This is shown in our main result,
presented in section 5, which says that if f is piecewise smooth, and a |is

chosen to be the optimal one introduced by e.g. Christie et al. [6], and




Zienkiewicz and Heinrich [17], then quasi-optimality is obtained.

2. SOME ABSTRACT RESULTS :

In this section we review two crucial results concerning variationally

formulated boundary value problems and finite element approximations. |

Theorem 2.1. Let KX and K be two reflexive Banach spaces, indexed

1, 2, ]

by a parameter A with A varying over some index set, with norms ||-| ]1 , and |

’ i

H | |2 A respectively,and let B be a bilinear form on Kl A x K2 At We f
’ b bl

[ %
suppose the following are satisfied: 1

(2.1) IBA(U’V)I = Cl“““l,AHVHZ,A for all ueKl,A’ V€K2’A ,

(2.2) inf sup |B,(u,v)[ > ¢y >0, :
u€K !

1,A V€K, \ |

}

Hully =t vl 4=

and

(2.3) sup lBA(u,v)l >0, for each 0 # v€l(2 A ,
1,A

where C1 and 02 are positive constants, possibly depending on A .

Then if f € (K there exists a unique solution u€l(1 A to the problem
1]

1
2,00

(2.4) BA(u,v) = f(v) VV€K2’A




Moreover, u satisfies

-1
Hully 5 < ¢ [1€]]
1,0 = %2 K}

If the bilinear form BA(-,-) satisfies the assumptions (2.1), (2.2), and

(2.3), BA is said to be a (CI,CZ)-proper bilinear .orm over the space

x K, It should be noted that (2.2) and (2.3) can be shown to be

Ki,a Ky p e

equivalent to

*

2.)* inf sup IBA(u,v)l > C2 >0 ’
v€l(2’A uel(l’
llv!‘Z,A=1 'IUI‘I,A=1
and
2.n* sup [B,(u,»)| >0, Yot¢ w€K)

2,4

This observation will be specifically used in this paper.
Since we will be studying finite element approximations to u , we let S1 A
14
and S be finite dimensional subspaces of K and K , respectively.
2,A 1,4 2,4

Clearly condition (2.1 holds on S1 A" 82 A with the same constant C1 . We
’ *

will be invoking the following theorem concerning the finite element solution u, -

M -
Theorem 2.2. Suppose BA is (CI’CZ) proper over Sl,A X SZ,A furnished

with the norms “.HI,A and II‘IIZ,A,respectively. Let u€K1'A,and let

€5 be the unique solution to B,(u ,v) = B ,(u,v) for all ve€S . Then
Yh€51,a A'‘Uh A 2,40




C
1 Hu-uhHl’Af_(l"'C—z) inf llu_wlll’A
1,A

For the proof of Theorems 2.1 and 2.2, see e.g. [1]. P




E 3. MESH DEPENDENT NORMS AND SPACES
In this section we define the various norms, spaces, and bilinear forms used
throughout this paper. The norms introduced here are analogous to those
defined in [2].
. Throughout the paper Ht(l), k=0,1,..., 1<p <o, will denote the usual
Sobolev space on the interval 1 in R1 consisting of functions with k

derivatives in LP(I) . On this space we have the usual norms given by
1

k () £
( E J luJ (x)'pdx)p s 1l <p<cwo
Y t ] k .
Y ess sup |u(J)| , p=w

j=0

]
H;(I) denotes the subspace of H;(I) of functions that vanish at the endpoints
of I . Note that H =1 .

P P

Let A = {0 = Xy €] < Lauxy s 1} , where N = N(A) , be an arbitrary mesh

on the interval I = [0,1]. Let hj = x4 - xj—l’ I, = (xj-l,xj) y J=1,...N,

]
oy = (hj + hj+1)/2 » 3 =1,...N-1, and h(a) = m?x hj l
We now define the space H; A’ 1 <p <~ , to be the completion of Hp(I)
furnished with the norm
r
é ! N-1 %
§ (J |u|Pdx + 7 pjlu(xj)|p) , L <p<e=
=1

. 0 3
; (3.2) | Tul o =
t H <
é p,A
E
‘ [lull p e
| il e Sl

The space Hz 4 can be easily identified with LPGB rV! , that is,




7
n 4°
s (Ud),e.,dy ) €H) -L@ 1 and
1
P,P
.)jd, 1 < < o
I gy + z o 1P, 1spew
G el -
p,a v = o
max{lluHLm(I), ldjl} , p
. , o 01 N %1
In consistency with our definition, we say uer AnH (D) if uGHp(I) and
’ P
4 = 3(xj) , §o=1,...8-1.
Let us now define Hi A = {VGH;(I): le en (Ij), j=1,...N} . We will
’ j
equip this space with a norm to be defined later.
on H° x H2 , where 1 + 1. 1 , we define a bilinear form B,(-,:)
p,4 q,4 P q A
by
N N-1
N
(3.4) B, (u,v) = E J u(-ev"-v')dx - E ed. J(v'(x.))
A oy = j J
=1 j=1

J

wvhere J(v'(x,)) = v'(xJ.+0) - v’(xj-O) and v'(xjiO) = 1lim v'(x) . These limits

J XK
are well defined because VII GHi(Ik) for each k . Now we will furnish the
k
space Hs A with the norm ||| l H , defined by
1B, (u,v) |
(3.5) vl = ueﬂgup TlelT
q;A “q,A

It is evident that the triangle inequality and linearityare satisfied by

[1]-11} . We must show positive definiteness. To do that we make use of the following

2
identit for v€H :
y p,A

?-‘_w IS

4.___ﬁ,
R

Ty




8
x _ Xt _ (x-x)
(3.6) v = | WA “rar- ] (e ° -1 eJ(v' (%)) +
I 1<i<N-1
0 X, <x

i~

_'32 - (Xi—l.) 1 1-x

4 1=e [Z (e © -DeJG'(x))) - [ (L*v) () (1-e  ©)

=1
0

where

)
-
-
-
2

(3.7) Lrv) | = (v,
j J

2 o, "
For ver,A , select u, = (uo'dl’dZ""dN—l) such that ug Ij = sgn(L*v)[Ij s

and dj= - sgnJ(V'(xi)) » J-1,...,N-1 , then

N N-1
(3.8) Bl = ] J ILivldx + T eI (x)) ] 5 0
=1’ i=1 !
3
1f B(uo,v) = 0 then L*vlI =0 and J(v‘(xj)) =0 , and (3.6) yields
k
v =0 . Therefore, Hf”{ is positive definite, and hence, a norm.
Let us now introduce another norm. For any VGH; A define HH 2
p,e,d
by 1
N N-1 —nlP
’[ ) [ levtey! [Pdx + § ep|J(v'(xj))|po; ﬁ] ,
(3.9) =, =t
if 1 <p <o ’
ol , -
Hp €,4 ; -1
vE max [[evi+v' || [t max e]J(v' (x) ] ,
L 1<i<N M5 1<i<N-1 I

if p=o

- ’ e




9
We shall now prove that the norms |l'l] 2 and |||~|]) are equal
Hoe .
for 1 < p < >~ and equivalent when p = «
Lemma 3.1. Let v€H2 , then
p,4
(3.10) Hell 5, = 1l 1<p<a
H
p’E’A
and
3 vl < il < 1] - -
2 42 = = e > PET
©, 6,0 w, e,

Proof. For 1 < p < =, a straightforward application of HBlder's inequality

yields
N 1
IBA(u,v)I j_({ |3|qu)q( Y J ]ev"+v'|pdx)p
i=1
o I,
J
N-1 Ly .-
+ (Lol DI PP G [Py ™P
2y 353 i1 i j
r N-1 Ly
U 1%+ ] ol |]Q[zj leviav! [Pax
_1 j=1 I
b
N-1 T
+ Y ePlI (x ) Pe PP = | ul] [vl] ’
i=1 ] h| Ho HZ
J q,0 PLEL4
and thus
(3.11) Hivl < vl
H
Pyt A
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That 3.11 holds when p =1 and p = « follows directly from H8lder's in-

equality.

2

For the inequality in the other direction, let v€l~lp A 1 <p <=, be
?*

i = v o .
given. Select u, = (u’dl""dN—l)elﬂhA as follows:

¥ = -|uev [P lsgn(Lavy
4 = -ep°1]J(v'(xJ.))lp_lo;_psgn(J(V'(xj))
for 1 < j < N-1
Then ||uv||:o = llv‘lﬁz , 1l <p <= s
q,4 p,€,4
ol g =1 Pl
oa’A
and BA(UV,V) = ‘iv‘lpz ’ 1 i P < @ ’
H
p,c,A

This immediately yields

Hivi z,|IV||H2 .

< o

[
jA
o

pP,g,A

For p==, 1let L be the index such that

and let

Hevmsolly 1y - 1"5‘§§NHW +v ”quj, .
J be the index such that
. ' -1 ' -1
€| J(v (XJ))IQJ = max e¢|J(v (xj))loj
1<j<N-1 .




11
Let n > 0 be given and define

E, = (x€I: [(ev'wv) ()| > lIw"*V'”quL) -

Then m(En) > 0, where m(A) is the Lebesgue measure of A.

For \/GHi’A define uy = (ﬁ,dl,...dN_l) as follows:
(3.12) U= —xEn(m(En))_lsgn(L*v) .
dj = pslsgn(J(v'(xJ)), if j=J,
0, j=1,...J-1,J41,...N-1 ,

where XA denotes the characteristic function of the set A . Then
lluvllHo = 2 and
1,A

vl 2 et 1y, ¢y + elTw e lo7h 2

Since n was arbitrary,

llVIIHZ 1/
o A
v > ——== ’

which concludes the proof.

1/ That this estimate is sharp cTn be seen by taking, for example, A = {0;%,1} s
X,Of_xf_._.’
-1, v(x)={ X 2 then |lvll , =2, but ([l =1.
1-x, 7 <x< 1 Hw,e,A
However, any v with L*v|I =0 has | |v}] 2 = |[Iv]]]
i Yfor j=1,...N H . a

P S
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We now prove an imbedding theorem.

2 P ) 1
Lemma 3.2. Let VGHP‘E’A = (HP’A,[[ [ 5 ) , then veLm(I)an(I) with
Pre,h
(3.13) Hvlle(U < aflvl]
D€ A
and
p L
1 --p
(5 -1 €
) P 2(1~e )
(3.14) vl RS tAY A HvH ,
pP(l-e ©) p’E’A

Furthermore, if we assume 0 < ¢ < ¢_, then

1 2

315y vl Jpcee® v, e qllv)} :
Hpie,A P,C A

where ¢ is independent of ¢ , p , and A .
Proof: We use (3.6) for v(x) and write

v(x) = wl(x) + wz(x) + w3(x) » where
(xt)
£

wi(x) = J ((L*v) (£)) (1=e yae

(4]

- ; it e i i o i ime T it T .,4_.-.,_4—.“‘

e e iR



(x-xi)
w@=-  § e - DI ()
1<i<N-1
xi_{x
and
_X
l-e K
WB(X) = - 1 (wl(l) + wz(l)) .
l1~e ¢

By inspection, and an application of Hilder's inequality, we obtain

1

byeo < J luvlee < 1L,

d
o P,E,A
and
N-1 N-1 - 1,1
ool < T el el = Teldereegnlel  of < vl ,
pP,€,8
Lepsw

Since (wj(x)( 5.‘“1(1)( + {wz(l)f < 2{{vi} 9 , (3.12) is proven. Also
H

P,EA
1 1/p
2 -px/¢
(3.16) | |wi]] PRSI S [f e dx] il
3VL (1) ~ ~1/¢ 2
P h(l‘e ) 0 Hp,(,A
-k
(1- e.p = -1
o e S L LI Lepenm
pP(1-¢" ¢) Hp,E,A

o e g e e
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-1
= w ! < 2t ;
For p we have |[w3[iLw(I) < |[v||“2 , which

™) -

l-e * o € A

is the limiting estimate for p < =

Next,
X—~X
- — i N-1
wh(x) = e Jw'(x)) = § z(x)
1<i<N-1 S £
xi_<_x
where 0, if XX,
2, () =4 _ (x-xy)
e g T x)) i %y <x
Therefore, we have
y o ¢ Tzl o |
(3.17) | |w? < 'z, 1] < I D] <
2L = L TR @ = L i
L) n1 % a1 L
< P ) le(v'(xi))loi 0d < e |ivil 2 ,
1
i=1 H
€,
1<pzx<~
{x _ (ETE 1
Finally, wj(x) = | (L*) () Le 7 de- J (LAv) (1) L o(ED)ar
o] o]
where e—x, if x>0
¢(x) = {
0 if x <0

o * -



Since L*VGLP(I) and %

L}
L] €Lp(1) and

(3.18) ||wi1|Lp(

Combining (3.16), (3.17),

Lemma 3.1, equation (

BA(u,v) is (1,1)-proper o

(o]

1
and (1,3)-proper on HI,A

o 2 X
Hp,A and Hp,s,A are ref

which leads to the existen
BA

or the solution v of the

Bs

Existence for the cases p

directly, but has to be dealt with separately.

15

2/
¢(§)€Iq‘1) , Young's inequality implies that

1 X
I) _,<. HL*VHLp(I)”? ¢’(F)HLP(I) ¢

A

[[Lav]] < vl s lepse s
Lp(I) H2 - =

Pye,4

and (3.18) with (3.13) vields (3.14). l

3.5) and a simple verification of (2.73) imply that

lexive, and s in this case we may apply Theorem 2.1

1
o 2 1 1 t
n H x H for 1 < < where -+ - =1
P, Q€0 P ’ P
x Hz _ . Also, for 1 < p - = | the spaces k
Pty A ]

ce of either the solution u , for the problem

q : $4
!
}
|
|

[P P e -

2
(u,v) = f(v), vver,r,A .

adjoint problem

(u,v) = £(u), VuEHg

s

=1 or p=« does not follow from Theorem 2.1

g/Young's inequality states that for 1 < p <= , if s € LP(R"), geLl(IRn)

then h = sxg exists a.e. and belongs to LP(R") and

Of course to apply this result to our case, we should extend L*v by zero to

all of IR .

Hnlly < sty sl
P p 1

.u*_*m1“.‘-ihni--g.-.h.uud-n-.ﬂ.i..i..iih‘..ﬁ...ﬂlil.lﬂ“
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4, THE FINITE DIMENSIONAL SPACES OF FINITE ELEMENTS

In this section we will analyze the behavior of the bilinear form (3.4)
2

o
on finite dimensional spaces Sl,A x SZ,A . Sl,AC:Hp,A , SZ,AC:Hq,s,A . The
space of trial functions S1 A will be the usual space of linear elements

b
N ve]l A . . N _
4.1) SI,A = (u,dl....,dN_l.uGHz,u{Ij is linear, j=1,...N, dj—u(xj), j=1,

However, for the test space S2 A ve will allow various other possibilities,
’

especially
E o] )
4.2 Sz,a = {v€H2:L*v[Ij =0, j=1,...N} ,
and
(4.3) s = (vE€RL: —Nil (%)}
. 2,4 vE&H,:v = L vjwj x R
J
where
[ 3a
1 N _ x €I, ,
hj (x Xj—l) + 3 (x xj—l)(xj x), for 3
J
W0 = 3
J 1 3a +1
hj+1 (xj+1—x)-;:§—-(x-xj)(xj+l-x), for )(61j+1 ,
{ j+1

and “j = uj(e,hj) , L.e.,in general aj will depend on ¢ and hj

Lo N=1}.
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km /\ W% (x)

X ,
i-| A %i V"M

Figure 1: The basis functions w?esg A and w?es; A
* ’

Figure 1 shows the shapes of the basis functions for the spaces Sg A and S; A
’ *

Remark: (4.1) is the space of L*-splines and (4.2) was introduced in [5],
f10]-1121, [15]-{17]. For other various analyses of the use of L*-splines, we

refer the reader e.g. to [7]-19], {13].

We will now study the inf-sup condition of the bilinear form BA(u,v)
E

on S1,A X SZ,A’ when SZ,A = SZ,A defined by (4.2).
o E 2
Theorem 4.1, Let SI,ACHp,A . SZ,ACHq,e,A , be defined by (4.1) and
(4.2) respectively, with % + %—= 1 and 1 < p <= . Then the bilinear form By

defined by (3.4) is (Cl,Cé)-prnper with C1 =1, and Cé = 2—1/p

E
Proof. Given VGSZ,A’ select uvesl,A such that




18
9 9_49
- P ' P p '
uv(xj) = -e" |J(v (xj))l 0 sgnJ(v (xj))
j=1,...,n-1
for 1 <p<w (or 1 <q < =),
Then we have
N-11+3 (1 + q/p)
(4.4) B,(u_,v) = e PlIv (x| p,'q/p
v j=1 j i
N-1 I
= eI e (™ = qivllY,
j=1 H
q,€,4
For any piecewise linear u we have
1 N N 1
J |u|pdx = 3 J Iulpdx < ¥ S(lux, )Ip + |U(X.)|p)h. <
2 j-1 h| i
i=1 j=1
o I
j
L
U(X )l 0, 1 < P < .
j=1 k| ]
and llul‘ =  max
L (I) 1<jeN 1IU(xj)l
Therefore,
N~-1 N-1 —a+1
@.5) Hu l1P0 <2 ] du G iPoy <2 T eIt () |%77 = 21]v] 1, :
H 3=1 : j=1 3 i H
p,d q,F A
l :P :m ’ and lIuVllHO = ||uVlle(I) = l .
m’A
Finallv, (4.4) and (7.3 irmplv
s e IIVI|:2
A yeY Q,£,0 -1/p q-q/p ~1/p
= 22 > 2 = 2 R < < ™
”uv” : ”ule . > ”VHHZ HVHHZ 1 <pc<
HP,A Hp,A Q€ ,A q,F WA
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If p=1, q== take u (x.) =d, , where d, j=1,...,N-1 1is defined by
By (uy>V) v1 X ! r '
(3.12). Then TT;~TT———~ = illvll 9 , which corresponds to the above
Ve e ,e,t
p,A L} _ l
estimate when p = 1, Hence,Theorem 4.1 follows with Cé =2 P <p<e®,
Obviously Cl = 1, and condition (2.3)' is also easy to check.
This leads to the following theorem. :
Theorem 4.2, Let S1 A and Sg A be the spaces defined by (4.1) and
(4.2), respectively and 1 < p < = , Tf u€n° , and we denote by UEGS the )
< = p,A h 1,A :
function such that
B,(ur,v) = B(u,v)  Vvesh |
aloy»V) = Blu,v V€S2, f
‘q
!
then "
rt
¥
1 z
- j
(4.6) |lur-ul| < (142P) inf  |{u-u|| |
) w€3 u°
pP,b 1,4 p,4

Proof. Theorem (4.2) follows immediately from Theorem 4.1 and Theorem 2.2.

The next theorem shows that (u—uﬁ)(x ) =0, for j=1,...,N-1

3

Theorem 4.3. Let u€H® 1 <p<w®,and uﬁes1 AGHO , with

p.o "’ s p,b

4.7 B(ulf,v) = B(u,v) , Vvesg'A
Then
(4.8) Ee 4, = 0 = 1.... N1
. Uh xl) - i ’ i-= g o0 0 g NT y

with u -~ (U,dj,...dy )
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Proof. Let 1 < p < o , By Theorer 2.1, there exists v GHZ
i7 'p,e,d
such that
o 1 1
. = = 4 = =
(4.9) B, (u,v,) = d; VuéHq'A v prg Tl

— ” - ' = 1] = . 3
(4.9) yields ev{ ~ vi = 0, on every Ij R J(vi(xj)) 0, j#1i, and

i
= .

? =
J(Vi(xi))
Because vi(x)is continuous, and evz + vi = 0, on (O,Xi) and (xi,l),
2 E
: ' . - .
v; 1is the Green'’s function at x = Xg - Obviously vié'}lw,e,A and vi€s2,A .

This implies that (4.9) holds for 1 <q -~ ® . Thus (4.7) and (4.9) imply

Blup-u,v;) = 0 = (uf(x)-d,)

which finishes the proof.

Theorem 4.3 is a restatement of the well known fact that when the Green's
functions at x = X, 1 <1 < N~-1, belong to the test space, then the error
at the nodal points is zero.

Now we turn to the study of the space SZ,A in a more general framework.

Since BA(u,v) depends only on the derivatives of the test functions, we let
N

(4.10) vt = ) ayx;
i=1

where has support in I1

X3

The situation is clear from Fig. 2




p—

< (]l)(l
Ve
\
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s’
Iy

O=x° xl

N
The graph of v' = X a
i=1

Figure 2:

1

Obviously we have J v'dx =
0

j =

3

(4.11) i) J X; (x)dx = il

Y, 5

ji-1

X

j
iv) I lgx3+xj|pdx = ng]hj

ijI

i*5e

0, because

1,...,N have the following properties.

where VeSZ,A’ and UGSI.A .

v(0) = v(1) = 0 .
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(i1
v) a) xj(xj l) Yoo
.o 1)
For uesl,A with u(xj) = dj , J=1,...N=-1, and VeSZ,A’ (4.11), (3.4), and
(3.9) imply
N-1
_ il 1i+1]
(4.12) B, (u,v) = J}ld lav3" hytar v, LIy
N-1
(3+11_, , (3]
~ ] ed.la Ys 5 |
j=1 J T3+1°5 6
1 1-
(4.13) a) | |v] 1P, z la 1Pvgd Tny + g " Pla, s boangd el
Hp.e,A i=
N
b) 7 an[J]h =0
In the argument that follows we take p = 2, hi = h for j=1,...N, where h = % , and
yiJ] = yi(h,;), j=1,...,N, depends in general on h and ¢ Before elaborating on
the next theorem, we will prove some lemmas.
;
‘; Lemma 4.4. Let aj, j=1,...,N be such that
i:
(4.14) aj-aj+1K =1, = 1,...,N-1
and
F N
| (4.15) 2.3;=0
i j=1
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then

N N
(6.16) () (KN = ] W= - ~—3i*§-+ N2 ——E—5~i1§——~», Kt1,
j=1 ) (1-K) (K"-1) (K°-1)
and
N 3
) O(IN) = T g2 - NN
j§1 j 12

Proof. From (4.14) it follows that

! -j+1
a; = ix FACT

Using (4.15) we find that

L
AT
KV-1
and (4.16) follows easily.
oK1, 8= N1 .5 which {mplies 4.16(b)

Lemma 4.5. Let &(K,N) be defined by (4.16), then

_N(N-1)

(4.17) d(K,N) > 5
(1+[k])

5 proof. First suppose K >0 (k# 1) . Then




N
PN = - —N : [% ) N(1+KY) - ] ]
(1-K) (1-K) (14+K+. ..+K )

N=1 + K(2N-4) +...+ KN‘Z(N—l)

(1+K)(1+K+...+KN'1)

2

i that K > 0 we get

oK) 5 [(N—l)(1+K+...K:—i)] , N1
- (14K) (1+...4K HJ 7 a+)

If K =1 (4.17) follows directly from (4.16b). Next suppose that

N is even, from (4.16) we obtain

Observing that jN - j > N-1, for j = 1,...,N-1, and since we are assuming

2
O(K,NY > g - 3 5 > N(N'l)z
k-1 (1-K)* 7 a+|k])
{ If N is odd, then we have
N RS e UL N N2 Vg2
PN = - 2 * N = - 7t 7 N-1_N~-2
(1-K) (X -1) (K~1) (1-K) (K-1) S (R 4R %4, ..

Because N is odd and K < 0, we have

NN s KM s 0,

and so

NN NOD

®-1%2  a-x?  a+k?

y

®(K,N) >

which completes the proof of the lemma.

P S

¥

PP
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Define v and u by
- _ & = £ =-4
(4.19) v o= y3 n Ye o u Y, + n Y5 » and let K N
when v # 0 .
Then we have, by (4.12),
Nfl N-1
(4.20) B, (u,v) = -hjgldj[ajv+aj+lu] = —hvjzldj[aj—aj+1K], provided v # 0.
Furthermore, using (4.13) we have
N i
2 2 ;
(4.21) Hvllly 2wy, 2ay '

HZ,E,A =1

Select v, where v, is of the form (4.10), such that it is characterized by

{aj??zl of Lemma 4.4. Then (4.20) and (4.14) imply that
N-1 %- N-1 ., 1/2
(4.22) sup IBA(u,vo)l = sup Inj]v| } dg < Il vl CF gy < vl
uf| a1 Hulj <1 j=1 j=1 J
HY Ho
2,4 2,A
u€Sl’A UESI'A

where we used the fact that

N-1
(4.23) ot > n ) df
" i=1 -
2,40

Using (4.21), (4.22), and lemmas (4.4) and (4.5), we obtain
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(4.24) inf sup IBA(u,v)I < 3] <
— 1 —
Holl , <t Jfull o A
H2,L,A Ho [#(K,N)N Yél
UGSZ,A VGSZ,A

1
2
(N-1) 7

sivia+ikD o 3ul+lvD
1 1 - 1
2

2 2

A slight modification for v = 0 will yield the same” result. Assume that

q?ieH;(O,l)), i=1,...,my m>1, are linearily independent, and

X-X i1
4w o x €l ’

n
(4.25) X;(x) = ) ;

i=1 j
where ¢y depends in general on £ ard h. We then have the following lemma.

Lemma 4.7. Let ¢ = (Cl""cm)

Assume % < n 1is sufficiently small. Then
(4.26) sup <1l <w

where 1. is independent of ¢ and h .

Proof. First note that (4.25) and the definitions of v, u, and \

.

(sce (4.19) and (4.10) iv ), imply that Iv]® , |u]®, and v, are all

quadratic torms in c = (v],...vm). Therefore we can restrict ourselves to the
w2

case where TR 1

The definition of (see (4.10)1iii) and rescaling imply that

Y—},
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1
m . ., m
- a4t . i
1= e ] oo 0ty gy < max,d ) Tl oyl ,
i=1 i=1
0
m
s = D o< V2 S = oy &

Also Yo \j(xj) <~ 72 izlici' ['¢i|il,2,1 . Thus v Y3~ 1 Ve

o m
max(1l,3 =) Z e, | 1]e [ . We obtain the same approximation for 1 and

h i=1 i i''1,2 1

2 m

5 s .

so |v]©+ |ul® < 2 max(1,9 ) z [ [[2
2 i‘'1,2,1
h™ i=1
Since it is assumed that ﬁ- is bounded, |v!2 + lulz is bounded as well,
independent of + and h
Because {dsi }lin=1 are linearly independent in LZ(I) and ¢>i€L2(I)
€ . € m

i=1,...,m , there exists an n > 0 such that < n implies that  {¢, + ¢ ¢£}i=1

are alsu linearly independent in LZ(I) . The only way for the left hand side

of (4.26) to go to infinity would be for Y, to go to zero. That is, there must

exist a sequence ¢, such that YA(E&) +0 as R » > , But lqu = 1 and

thus {Fn} has a subsequence converging to say Eo . Since Y, depends con-

tinuously on ¢ , ya(zé) = 0 , contradicting the linear independence of

£ vy .
{¢i + ¢i}i=1 , and thus concluding the proof.

Now we can formulate the main result of this section as the following theorem.

Theorem 4.8. Let hj =h, j=1,...,N, and % < n be sufficiently small.
Let S2 Afﬁ; be an N-1 dimensional space, such that if vES2 A’ then
£ »
4 =

v l,i a;x;(x)  with
m X=X

X:(x) = fc ¢(—~—1:H . x €1, , where

h| LPR h J
i=1 ]

il e, i it S ittt i it it




{Qi}?=1 are linearly independent in LZ(I) Then
_1
inf sup < KN 2 , K >0 (independent of ¢ and h)
Vil , =1 Ll o=
H H
2,e,A A
v€52’A u€'81’A

Proof. The theorem follows immediately from (4.24) and Lemma 4.7.

It is readily seen that the space SZ A satisfies the assumptions of
¥

Theorem 4.8 for any « Theorem 4.8 shows that the use of test functions

recommended in (5], [101-{12], [15}-[17], leads to an inf-sup condition converging to

€
0 a N * >~ when  1s held oonstant. Moreover , there is no choice of ¢i(x),

h
independent of ¢ and h , which would lead to quasi-optimal results. Neverthe-

less in the next section we will show that the situation significantly impreoves

when assumptions about the input data are made.

Nentiatein Rttt 7 VT P N

o eihiiy smem rm———— oy e
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5. MODIFIED VARIATIONAL PRINCIPLE

In this section we perform a more detailed analysis of the subspace s

2,07
defined by (4.3). 1In particular, we will compare this space to
Sg A® when each is being tested against the subspace Sl A of plecewise
linear trial functions. L
To distinguish between the spaces Sg A and S; A’ Ve will write ) and
1} » :]
Vo denoting a function in Sg A and S; A respectively. By straightforward :
’ » |
computations we get :
3
]
V.=V, i3
(5.1) il =42 Ew k
: h|
] 3 ‘1
where *ﬂ
X, =X "
-1 |
b *
(5.2) E.(x) = — s v, = v (x,) . |
3 € (1-e 7%y 37 EY §
Analogously, |
i 4
v,-v j
(5.3) vl =1y §
a I h j i 4
3 3 *
|
where Iq
]
6 + |
a X,+x t
(5.4) x,(x) =1 - —d (x-x ,) , x =4 -1
J h 1 1 2
3 -3 -3

and once again vy = va(xj)

Let P, be the orthogonal projection operator from LZ(Ij) to linear functions

J

in Ij . By direct computation we obtain
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6 By 2 6 o
(5.5) PjEj(x) =1 - E-(coth 5 - E—)(x—xj_l) =1 - o (x~x 1) = xo(x) ,
3 3 3 -5 9
where
(5.6) a® = o%(e,h.) = coth Ei -2t
. 5 aj shy) = coth >2 hj . g
From now on we denote 52 AT S2 A that is, we consider the particular

o = o° where uo is defined by (5.6). We remark that o’ 1is the same as the &

: h| .
"optimal" o described in [11], [12], [15]-[17]. g

We now present some important relationships between Sg A and Sg A"
* ’

o

E
Lemma 5.1. Let v_€S and %GSLA’

o -
E 2,4 (a = a”), be such that vE(xj) =

va(xj) for j = 0,...,N. Then we have
(5.7) (VE,Z)I = ("&’Z)I

, ( z not necessarily

for any z€L2(I) » 2z linear on Ij for § = 1,...,N

continuous at ), and

3
(5.8) (VE,Q)I = (v(l'q)I

for any q€L2(I) » q constant on Ij for j§ =1,...,N.

Proof. (5.7) follows immediately from (5.1)-(5.6). To prove (5.8) let

q be plecewise constant on A . Let z(x) = fgq(t)dt . Then 2z 1is linear on

Ij and therefore by (5.7) we have
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Integration by parts, recalling that 2z is continuous, and that vE(O) =

va(O) and VE(l) = v, (1), yields the desired result.

Theorem 5.2. Let lJéSl Ve s Y, be as in lemma 5.1. Then

A VE

(5.9) BA(u,vE) = BA(u,va) . !

Furthermore,let f be a linear combination of Dirac "delta functions"

centered at the mesh points xj s j=1,...,N-1, and any piecewise constant

function on A . Let uEesl,A and uO‘GSI,A be such that

_f B, (ug,vg) = (£,v5) , VvEesg

1

e e i

and
a
BA(ua,va) = (f,va) . vvaGSZ,A
Then
(5.10) u, = u

E a - [ ]
Proof. For UGSI’A and VGSZ,A or VGSZ,A we have’ BA(u,v) (eu'-u,v').
Since ~u' - u 1is linear on Ij’ (5.7) implies (5.9).
The fact that VE(XJ) = va(x1) for j=1,...,N-1, and (5.8) together with

(5.9), yield (5.10).

T it T = N PR R T .

Theorem 5.2 shows that the global stiffness matrices generated by using S1 A
1]

(a=uo), respectively, are identical. However, we have shown (see

| a
with Sz,A and SZ,A’
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Theorem 4.2),that for any uGH; A
(5.11) Ilu-uEll < C inf ||u~w]]
B T wes HY
Ps 4 1,4 p,A
with C independent of A , € . On the other hand,we have shown (see Theorem

4.8) that there exists uGHo . (resp. f € (1{2 )'), such that
2,4 2,e,A

b4

1
(5.12) | u-u || > Ch 2 inf ||u-w||
[ 4 o] - HO

Hy,a V€S . 2,5
on a uniform partition. Comparing (5.11) and (5.12) we see that the use of 52 A
will deteriorate the result for some u, (resp. f). The question arises as to
whether or not this £ has any "engineering meaning', that is, will this effect
be observed in practice.

The preceding theorem says that if f is piecewise constant, then

Up = u . This suggests that if f 1ig "nearly" piecewise constant, then u,
may be ''mearly" equal to up . We shall now show that this]is true; that is,
if f (the input data) is 'reasonable" then the term Ch 2 can be replaced

by C 1independent of ¢ and h .

\
Theorem 5.3. Let fG(Hi . A)' ’ f(H;(Ij) j =1,...,N. Denote by
-9

leH: p the exact weak solution of the problem
L]

“eu” +u' = f ,

u(0) = u(l) =0

1]

i ——— ? ———

el i




1
33
that is,
(5.13) B (u,v) = (£,v), VvEH ‘
* AT ’ ’ q,f’A ) 1
|
Let udesl,A be such that
- 1
(5.14) B (u ,v) = (f,v) VvesS a=a’ \
) s ’ ’ 2,A°
A
Then for 1<p<e , x
:
i
(5.15) u-u 1] < +2'Py ing [Ju-wl] 4 +
Hp,a v Hp.,0 £
2016 P
+ C max [bjl]f}l 1 ] ’ '
3=1,...,N Hm(lj)
with C independent of A , € , Pp , and f . f
We first prove a lemma. '
Lemma 5.4.
i
[{vi-vell < ¢l fvgl] , ls<gczw- £
E'V'L (1 - E''L (1 - 7 =
* q( j) q( j) b

with € independent of q , 4, and e.

Proof. Obviously it is sufficient to show that

(5.16) vl < cifvril
a Lq(Ij) VUE Lq(Iq)
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Since v& is the projection of vé onto piecewise linear functions, we have
(5.17) (vé-v&,v;)I =0,
A

and hence

» ' 2 1 1
J (vg) dx = J"é"&d" < Mgl @y alle a) A
I, I, 4] P
j j
Therefore,

[ o] ;‘

1, : ;
(5.18) q :J lviifax , 1 <q <= X

' |P P

[J |va| dg] Ij t-

I :

(Where, if q = 1, we replace the denominator by llvé‘lL 1 )’)
)

Returning to (5.1) and (5.3), we see that instead of v; and vé, we

E can deal with xj(x) and Ej(x), respectively. Since
E, ((x) <
Ei X5 ) <
¥ and
. x.(x) >
; J

we get
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and

p q g
; p q,p

. 1+3a, .
(J IxJI d;) < ( 3aJ) hJ

I,
J

Therefore,

[J (X.)zde
. q
Ij q -

"(1+30LJ.)“12'q =h (2(1+3aj))-q

(5.19) q j j
J Ilepd%]p
|
However ’~
t
q q !
I xylax < h (#3007,
1.
J
which implies q
[J xz(x)dx]
I, _
J lg]%dx > J 2 by ((1+3a,)2) q
(5.20) IJ' J |x(X)lpdx]!;
I.
]

_>_2'q(1+3aj)'2qJ |xj|qu
'3

Th. refore, by (5.18) - (5.20) we have

v ]l < 204307 vyl
a Lq(Ij) 3 E Lq(Ij)

(5.21)
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Furthermore, it is easy to see from (5.6) that 0 < a < 1 , and thus
because of (5.21), (5.16) holds for 1 < q <» , If q =« we simply note that
| |E |le(I y S <1+ 3a and hence (5.16) also holds in this case. Now we

will prove Theorem 4.3.

Proof. Let VE(Xj) = vu(xj) for j=0,...N.

Since

(f,va) = BA(ua,va) = BA(ua’vE) s

and
(f)vE) = BA(UE,VE) ’ '
we get

B(uE-ua,vE) = (f,vE—va)

Hence, applying Theorem 4.1 yields

(f,v g~V ) ;
”“E'“aHHo <c SuPlT—ﬂ—*— ‘
Pt VESSZA COHD |

By Theorems 4.2, 4.1, 2.2, and the triangle inequality
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(5.22) Hu-u 1] o < lumugl] o0+ Tug=a || o <
H
HP,A p,A p,A
1/p (f,v‘-v )
<2 ) anf |uw]] o +c sup_ 17;;1§;—51——-
wesl, HP,A VEESZ,A E Hi -
s b9

Therefore, we have to deal with the term

(f,vE—vu)

=P TRl
E E'l 2
VEGSZ,A Hq,e,A

Denote by ¥ the function which is constant on Ij, which SatiSfiQS=J (f-?)dx
I.

X ]

If we let Fj(x) = ] (f—%)(t)dt , then Fj(x

xj-l

j—l) = F&(xj) = 0, and since

EGHi(Ij) » we have

1,2
(5.23) le(x)l ighj”f“l’w’lj

Further,we denote by F(x) the function such that F(x)|I = Fj(x) . By
j
Lemma 5.1 we get

(?,VE-Va) =0 ,

and hence

A"
= —-— — = ' -
(f’VE_va) (f f9VE v(l) (F ’VE V“)




38
Integration by parts, (5.23), Lemma 5.4 and Lemma 3.2 yield
N N 1 2
[(E,vpmv )| < 2 Foovgvady | < ) g njllell livg-vel] <
E a ’ — . w —
351 L -5 80 Loy P el L (1)
1,2
<C  max [—h.HfII ]llvll
— ‘o 8 'j 1,»,1, E 2
j=1,...,N j Hl,z A
It can be easily verified from (3.9) and (4.2) that
1
”V” <2qHVEH2 , 1 <q=<~= .
1 €4A q,c,A :
L E
lhus, we have &
k-
| (£,v BV )l
(5.24) Eﬂ—ﬂ—~———<0maxh IIfH ,
v €S Lo 1
E 72,4 H2 1

q,¢,4

with C independent of A, gq, € and f. (5.24) together with (5.22) proves the

theorem.

P
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6. NUMERICAL CONSIDERATIONS
Theorem 5.3 shows that for general meshes and parabolically upwinded test
functions, the error consists of two parts. In tnis section we comment on the

interplay between them.

For the error estimate (5.15) to be'nearly'quasi-optimal, the second term

(6.1) C max [h%llfl]Hl 1,
j=1,...n 3 »(1,)

should be smaller than, or of the same magnitude as, the first (quasi-optimal)

term

(6.2) (1+21/p) inf [{u-w]| N .
w€S. | H o
1,4 P,

It is well known from singular perturbation theory that the exact solution

to (1.1) can be written as a combination of a smootn term and a boundary layer term,

The boundary layer term is of the form e(x—l)/C ;3 thus, it is sufficient to analyze
ine ||V ] o
wesl,A pya

A simple analysis of this term on a uniform mesh with stepsize h implies that

for e<<h

inf ]Iu-wllho > Khl/p s

wsSl,A P’A

with K independent of ¢, h and p . Thus, (6.1) can be neglected when compared
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to (6.2).

If e¢>>h, standard approximation tineory says that (6.2) will have magnitude
h2 , the same magnitude as (6.1).

Finally, we remark that the constant C 1in (6.1) can be computed exactly.

In a forthcoming paper, an adaptive approach with a-posteriori error estimates

will be studied.
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